Shape alloys of nanorods and nanospheres from self-assembly.
نویسندگان
چکیده
Mixtures of anisotropic nanocrystals promise a great diversity of superlattices and phase behaviors beyond those of single-component systems. However, obtaining a colloidal shape alloy in which two different shapes are thermodynamically coassembled into a crystalline superlattice has remained a challenge. Here we present a joint experimental-computational investigation of two geometrically ubiquitous nanocrystalline building blocks-nanorods and nanospheres-that overcome their natural entropic tendency toward macroscopic phase separation and coassemble into three intriguing phases over centimeter scales, including an AB2-type binary superlattice. Monte Carlo simulations reveal that, although this shape alloy is entropically stable at high packing fraction, demixing is favored at experimental densities. Simulations with short-ranged attractive interactions demonstrate that the alloy is stabilized by interactions induced by ligand stabilizers and/or depletion effects. An asymmetry in the relative interaction strength between rods and spheres improves the robustness of the self-assembly process.
منابع مشابه
Effect of Temperature and Reaction Time on the Morphology and Phase Evolution of Self-assembled Cu7.2S4 Nanospheres Obtained from Nanoparticles and Nanorods Synthesized by Solvothermal Method
In this research, self-assembled copper sulfide nanospheres were synthesized by the solvothermal method and the effects of reaction parameters, including reaction time and reaction temperature on the morphology and phase evolution of copper sulfide nanostructures were investigated. For the identification of copper sulfide nanostructures, X-ray diffraction (XRD), infrared spectroscopy (FT-IR), f...
متن کاملColloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly
The color of colloidal dispersions of gold particles in a fluid, typically water, varies from red to blue, depending upon the shape and size of particles. The color and optical properties of gold nanoparticles originate from localized surface plasmons, and are sensitive to their local dielectric environment. Unlike nanospheres, the optical properties, hydrodynamic behavior as well as phase beha...
متن کاملLinear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery.
Elongated micelles have many desirable characteristics for cancer-drug delivery, but they are difficult to obtain since amphiphilic polymers form such nanostructures only within narrow composition ranges depending on their own structures. Herein, we demonstrated a facile fabrication of different nanostructures via drug content-controlled self-assembly of amphiphilic linear-dendritic drug conjug...
متن کاملTriphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
Understanding the nature of the self-assembly of peptide nanostructures at the molecular level is critical for rational design of functional bio-nanomaterials. Recent experimental studies have shown that triphenylalanine(FFF)-based peptides can self-assemble into solid plate-like nanostructures and nanospheres, which are different from the hollow nanovesicles and nanotubes formed by diphenylala...
متن کاملAssembling patchy nanorods with spheres: limitations imposed by colloidal interactions.
For gold nanorods the intrinsic shape-anisotropy offers the prospect of anisotropic assembly, provided that their region-selective surface modification can be realized. Here we developed nanorods with a patchy surface chemistry, featuring positively charged molecules in the tip region and polymer molecules at the sides by careful control of molecule concentrations during ligand exchange. When t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 13 10 شماره
صفحات -
تاریخ انتشار 2013